REVIEW ARTICLE
Year : 2011  |  Volume : 10  |  Issue : 1  |  Page : 9

The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies


1 Laboratory of Molecular Medicine and Biotechnology, CIR, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21 - 00128 Rome, Italy
2 Department of General and Environmental Physiology and Center of Excellence in Comparative Genomics (CEGBA), University of Bari, 70126, Bari, Italy
3 Department of Biomedical Research (CIR), University Campus Bio-Medico of Rome, Via Álvaro del Portillo 21 - 00128 Rome, Italy
4 IBI Istituto Biochimico Italiano Giovanni Lorenzini, Via Fossignano, 2 - 04011 Aprilia (LT), Italy
5 Institute of Translational Pharmacology. Laboratory of Molecular Pathology and Experimental Oncology. National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
6 Laboratory of Molecular Medicine and Biotechnology, CIR, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21 - 00128 Rome; Laboratory of Oncology, IRCCS 'Casa Sollievo della Sofferenza,' Viale Padre Pio, 71013 San Giovanni Rotondo (FG), Italy

Correspondence Address:
Vito Michele Fazio
Laboratory of Molecular Medicine and Biotechnology, CIR, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21 - 00128 Rome; Laboratory of Oncology, IRCCS 'Casa Sollievo della Sofferenza,' Viale Padre Pio, 71013 San Giovanni Rotondo (FG)
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1477-3163.78279

Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci-adenoma-carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS-treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed31935    
    Printed1309    
    Emailed30    
    PDF Downloaded528    
    Comments [Add]    
    Cited by others 28    

Recommend this journal