Article Cited by others


p53 regulates mtDNA copy number and mitocheckpoint pathway

Kulawiec Mariola, Ayyasamy Vanniarajan, Singh Keshav K

Year : 2009| Volume: 8| Issue : 1 | Page no: 8-8

   This article has been cited by
1 P53 and Sirt1: Routes of metabolism and genome stability
Stefania Gonfloni,Valentina Iannizzotto,Emiliano Maiani,Giovanna Bellusci,Sarah Ciccone,Marc Diederich
Biochemical Pharmacology. 2014;
[Pubmed]  [Google Scholar] [DOI]
2 CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway
Qichao Huang,Jibin Li,Jinliang Xing,Weiwei Li,Hongwei Li,Xia Ke,Jing Zhang,Tingting Ren,Yukui Shang,Hushan Yang,Jianli Jiang,Zhinan Chen
Journal of Hepatology. 2014;
[Pubmed]  [Google Scholar] [DOI]
3 p53 and Mitochondrial Function in Neurons
David B. Wang,Chizuru Kinoshita,Yoshito Kinoshita,Richard S. Morrison
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014;
[Pubmed]  [Google Scholar] [DOI]
4 Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging
Perry G Ridge,Taylor J Maxwell,Spencer J Foutz,Matthew H Bailey,Christopher D Corcoran,JoAnn T Tschanz,Maria C Norton,Ronald G Munger,Elizabeth OæBrien,Richard A Kerber,Richard M Cawthon,John SK Kauwe
BMC Bioinformatics. 2014; 15(Suppl 7): S6
[Pubmed]  [Google Scholar] [DOI]
5 Transformations of the macromolecular landscape at mitochondria during DNA-damage-induced apoptotic cell death
N Yadav,A Pliss,A Kuzmin,P Rapali,L Sun,P Prasad,D Chandra
Cell Death and Disease. 2014; 5(10): e1453
[Pubmed]  [Google Scholar] [DOI]
6 Tumor suppressor p53 and its mutants in cancer metabolism
Juan Liu,Cen Zhang,Wenwei Hu,Zhaohui Feng
Cancer Letters. 2013;
[Pubmed]  [Google Scholar] [DOI]
7 Mitochondrial DNA mutations and breast tumorigenesis
Neelu Yadav,Dhyan Chandra
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2013; 1836(2): 336
[Pubmed]  [Google Scholar] [DOI]
8 Reduced mitochondrial DNA copy number in Chinese patients with osteosarcoma
Man Yu,Yanfang Wan,Qinghua Zou
Translational Research. 2013; 161(3): 165
[Pubmed]  [Google Scholar] [DOI]
9 Tumor suppressor p53 and estrogen receptors in nuclear–mitochondrial communication
Nadi T. Wickramasekera,Gokul M. Das
Mitochondrion. 2013;
[Pubmed]  [Google Scholar] [DOI]
10 Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity
J. Zhuang,P.-y. Wang,X. Huang,X. Chen,J.-G. Kang,P. M. Hwang
Proceedings of the National Academy of Sciences. 2013; 110(43): 17356
[Pubmed]  [Google Scholar] [DOI]
11 The regulation of cellular metabolism by tumor suppressor p53
Yingjian Liang,Juan Liu,Zhaohui Feng
Cell & Bioscience. 2013; 3(1): 9
[Pubmed]  [Google Scholar] [DOI]
12 More targets, more pathways and more clues for mutant p53
S Garritano,A Inga,F Gemignani,S Landi
Oncogenesis. 2013; 2(7): e54
[Pubmed]  [Google Scholar] [DOI]
13 Resveratrol depletes mitochondrial DNA and inhibition of autophagy enhances resveratrol-induced caspase activation
Varun Prabhu,Pragya Srivastava,Neelu Yadav,Michael Amadori,Andrea Schneider,Athul Seshadri,Jason Pitarresi,Rachael Scott,Honghao Zhang,Shahriar Koochekpour,Raghu Gogada,Dhyan Chandra
Mitochondrion. 2013; 13(5): 493
[Pubmed]  [Google Scholar] [DOI]
14 Metabolic Regulation by p53 Family Members
Celia R. Berkers,Oliver D.K. Maddocks,Eric C. Cheung,Inbal Mor,Karen H. Vousden
Cell Metabolism. 2013; 18(5): 617
[Pubmed]  [Google Scholar] [DOI]
15 Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F1F0-ATP synthase
Marie Bergeaud,Lise Mathieu,Arnaud Guillaume,Ute M Moll,Bernard Mignotte,Nathalie Le Floch,Jean-Luc Vayssière,Vincent Rincheval
Cell Cycle. 2013; 12(17): 2781
[Pubmed]  [Google Scholar] [DOI]
16 Mitochondria as a Target of Environmental Toxicants
J. N. Meyer,M. C. K. Leung,J. P. Rooney,A. Sendoel,M. O. Hengartner,G. E. Kisby,A. S. Bess
Toxicological Sciences. 2013; 134(1): 1
[Pubmed]  [Google Scholar] [DOI]
17 Impaired Mitochondrial Metabolism and Mammary Carcinogenesis
Nagendra Yadava,Sallie S. Schneider,D. Joseph Jerry,Chul Kim
Journal of Mammary Gland Biology and Neoplasia. 2013; 18(1): 75
[Pubmed]  [Google Scholar] [DOI]
18 Pifithrin-µ increases mitochondrial COX biogenesis and MnSOD activity in skeletal muscle of middle-aged mice
Jie He,Zhengtang Qi,Yuhui Su,Qiang He,Jingxia Liu,Lu Yu,Omar S. Al-Attas,Tajamul Hussain,Edgardo Tan De Rosas,Liu Ji,Shuzhe Ding
Mitochondrion. 2012; 12(6): 630
[Pubmed]  [Google Scholar] [DOI]
19 Transcriptional Regulation by Nuclear Corepressors and PGC-1a: Implications for Mitochondrial Quality Control and Insulin Sensitivity
Zhengtang Qi,Shuzhe Ding
PPAR Research. 2012; 2012: 1
[Pubmed]  [Google Scholar] [DOI]
20 Nuclear factor-?B, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect
Renée F. Johnson,Neil D. Perkins
Trends in Biochemical Sciences. 2012; 37(8): 317
[Pubmed]  [Google Scholar] [DOI]
21 Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer
Tuuli Kaambre,Vladimir Chekulayev,Igor Shevchuk,Minna Karu-Varikmaa,Natalja Timohhina,Kersti Tepp,Jelena Bogovskaja,Riina Kütner,Vahur Valvere,Valdur Saks
Journal of Bioenergetics and Biomembranes. 2012; 44(5): 539
[Pubmed]  [Google Scholar] [DOI]
22 Mitochondrial regulation of epigenetics and its role in human diseases
Sheroy Minocherhomji,Trygve O. Tollefsbol,Keshav K. Singh
Epigenetics. 2012; 7(4): 326
[Pubmed]  [Google Scholar] [DOI]
23 Targeting the p53 signaling pathway in cancer therapy – the promises, challenges and perils
Alexander H Stegh
Expert Opinion on Therapeutic Targets. 2012; : 67
[HTML Full text]  [Google Scholar] [DOI]
24 Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α
Vadrot, N., Ghanem, S., Braut, F., Gavrilescu, L., Pilard, N., Mansouri, A., Moreau, R., Reyl-Desmars, F.
PLoS ONE. 2012; 7(7): art- e40879
[Pubmed]  [Google Scholar]
25 Associated microsatellite alterations in mitochondrial DNA and in TP53 in thoracic esophageal squamous cell carcinoma
Lin, C.-S., Wang, L.-S., Chang, S.-C., Chou, T.-Y., Hsu, W.-H., Liu, C.-S., Lee, M.-H., (...), Wei, Y.-H.
Oncology Reports. 2012; 28(1): 69-76
[Pubmed]  [Google Scholar]
26 Mitochondrial regulation of epigenetics and its role in human diseases
Minocherhomji, S., Tollefsbol, T.O., Singh, K.K.
Epigenetics. 2012; 7(4): 326-334
[Pubmed]  [Google Scholar]
27 Somatic Mitochondrial DNA Mutations in Human Cancers
Yu, M.
Advances in Clinical Chemistry. 2012; 57: 99-138
[Pubmed]  [Google Scholar]
28 Nuclear factor-κB, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect
Johnson, R.F., Perkins, N.D.
Trends in Biochemical Sciences. 2012; 37(8): 317-324
[Pubmed]  [Google Scholar]
29 Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status
Vlad C. Sandulache, Heath D. Skinner, Thomas J. Ow, Aijun Zhang, Xuefeng Xia, James M. Luchak, Lee-Jun C. Wong, Curtis R. Pickering, Ge Zhou, Jeffrey N. Myers
Cancer. 2011; : n/a
[HTML Full text]  [Google Scholar] [DOI]
30 Metabolic regulation by p53
Oliver D. K. Maddocks, Karen H. Vousden
Journal of Molecular Medicine. 2011; 89(3): 237
[HTML Full text]  [Google Scholar] [DOI]
31 Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers
Man Yu
Life Sciences. 2011;
[HTML Full text]  [Google Scholar] [DOI]
32 Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone
Gonçalves, A.P., Máximo, V., Lima, J., Singh, K.K., Soares, P., Videira, A.
Biochimica et Biophysica Acta - Molecular Cell Research. 2011; 1813(3): 492-499
[Pubmed]  [Google Scholar]
33 Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation
V Bakthavatchalu, S Dey, Y Xu, T Noel, P Jungsuwadee, A K Holley, S K Dhar, I Batinic-Haberle, D K St Clair
Oncogene. 2011;
[HTML Full text]  [Google Scholar] [DOI]
34 The awakening of an advanced malignant cancer: An insult to the mitochondrial genome
Cody C. Cook, Masahiro Higuchi
Biochimica et Biophysica Acta (BBA) - General Subjects. 2011;
[HTML Full text]  [Google Scholar] [DOI]
35 Dual targeting of mitochondrial proteins: Mechanism, regulation and function
Ohad Yogev,Ophry Pines
Biochimica et Biophysica Acta (BBA) - Biomembranes. 2011; 1808(3): 1012
[Pubmed]  [Google Scholar] [DOI]
36 Genetic insights into OXPHOS defect and its role in cancer
Dhyan Chandra, Keshav K. Singh
Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2011; 1807(6): 620
[HTML Full text]  [Google Scholar] [DOI]
37 Experimental switching of copper status in laboratory rodents
Ilyechova, E., Skvortsov, A., Zatulovsky, E., Tsymbalenko, N., Shavlovsky, M., Broggini, M., Puchkova, L.
Journal of Trace Elements in Medicine and Biology. 2011; 25(1): 27-35
[Pubmed]  [Google Scholar]
38 Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change
Xin Zhou, Ning Li, Yanling Wang, Yipei Wang, Xin Zhang, Hong Zhang
Mitochondrion. 2011;
[HTML Full text]  [Google Scholar] [DOI]
39 Dual targeting of mitochondrial proteins: Mechanism, regulation and function
Yogev, O., Pines, O.
Biochimica et Biophysica Acta - Biomembranes. 2011; 1808(3): 1012-1020
[Pubmed]  [Google Scholar]
40 Mitochondrial Liaisons of p53
Lorenzo Galluzzi, Eugenia Morselli, Oliver Kepp, Ilio Vitale, Marcello Pinti, Guido Kroemer
Antioxidants and Redox Signaling. 2011; 15(6): 1691
[HTML Full text]  [Google Scholar] [DOI]
41 p53, Aerobic Metabolism, and Cancer
Cory U. Lago, Ho Joong Sung, Wenzhe Ma, Ping-yuan Wang, Paul M. Hwang
Antioxidants and Redox Signaling. 2011; 15(6): 1739
[HTML Full text]  [Google Scholar] [DOI]
42 Tumor suppressor p53: New functions of an old protein
Feng, Z., Wu, R., Lin, M., Hu, W.
Frontiers of Biology in China. 2011; 6(1): 58-68
[Pubmed]  [Google Scholar]
43 Prolonged Nrf1 overexpression triggers adipocyte inflammation and insulin resistance
Florence H. van Tienen, Patrick J. Lindsey, Carla J. van der Kallen, Hubert J. Smeets
Journal of Cellular Biochemistry. 2010; 111(6): 1575
[HTML Full text]  [Google Scholar] [DOI]
44 The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
Zhaohui Feng, Arnold J. Levine
Trends in Cell Biology. 2010; 20(7): 427
[HTML Full text]  [Google Scholar] [DOI]
45 The causes of cancer revisited: “Mitochondrial malignancy” and ROS-induced oncogenic transformation – Why mitochondria are targets for cancer therapy
Stephen J. Ralph,Sara Rodríguez-Enríquez,Jiri Neuzil,Emma Saavedra,Rafael Moreno-Sánchez
Molecular Aspects of Medicine. 2010; 31(2): 145
[Pubmed]  [Google Scholar] [DOI]
46 Manganese superoxide dismutase vs. p53: Regulation of mitochondrial ROS
Holley, A.K., Dhar, S.K., St. Clair, D.K.
Mitochondrion. 2010; 10(6): 649-661
[Pubmed]  [Google Scholar]
47 The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein
Feng, Z., Levine, A.J.
Trends in Cell Biology. 2010; 20(7): 427-434
[Pubmed]  [Google Scholar]
48 Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion
Wang, L.
Nucleosides, Nucleotides and Nucleic Acids. 2010; 29(4-6): 370-381
[Pubmed]  [Google Scholar]
49 The causes of cancer revisited: "Mitochondrial malignancy" and ROS-induced oncogenic transformation - Why mitochondria are targets for cancer therapy
Ralph, S.J., Rodríguez-Enríquez, S., Neuzil, J., Saavedra, E., Moreno-Sánchez, R.
Molecular Aspects of Medicine. 2010; 31(2): 145-170
[Pubmed]  [Google Scholar]
50 Decreased copy number of mitochondrial DNA in ewingæs sarcoma
Yu, M., Wan, Y., Zou, Q.
Clinica Chimica Acta. 2010; 411(9-10): 679-683
[Pubmed]  [Google Scholar]
51 Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
Proceedings of the National Academy of Sciences. 2010; 107(16): 7461
[HTML Full text]  [Google Scholar] [DOI]
52 The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells
Beatrix Fauler, Rudi Lurz, Hans Lehrach, James Adjaye, Alessandro Prigione
Stem Cells. 2010; 28(4): 721
[HTML Full text]  [Google Scholar] [DOI]
53 Cancer as a metabolic disease
Seyfried, T.N., Shelton, L.M.
Nutrition and Metabolism. 2010; 7(art no 7)
[Pubmed]  [Google Scholar]
54 Decreased copy number of mitochondrial DNA in Ewingæs sarcoma
Man Yu, Yanfang Wan, Qinghua Zou
Clinica Chimica Acta. 2010; 411(9-10): 679
[HTML Full text]  [Google Scholar] [DOI]
55 p53 Improves Aerobic Exercise Capacity and Augments Skeletal Muscle Mitochondrial DNA Content
Park JY, Wang PY, Matsumoto T, et al.
CIRCULATION RESEARCH. 2009 ; 105(7 ): 705-712
[Pubmed]  [Google Scholar]
56 P53 and metabolism
Vousden, K.H., Ryan, K.M.
Nature Reviews Cancer. 2009; 9(10): 691-700
[Pubmed]  [Google Scholar]
57 p53 and metabolism
Karen H. Vousden,Kevin M. Ryan
Nature Reviews Cancer. 2009; 9(10): 691
[Pubmed]  [Google Scholar] [DOI]
58 mtDNA G10398A variant in African-American women with breast cancer provides resistance to apoptosis and promotes metastasis in mice
Mariola Kulawiec, Kjerstin M Owens, Keshav K Singh
Journal of Human Genetics. 2009; 54(11): 647-654
[Pubmed]  [Google Scholar] [DOI]


Read this article