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Abstract
In analytic chemistry a detection limit (DL) is the lowest measurable amount of an analyte that can be 
distinguished from a blank; many biomedical measurement technologies exhibit this property. From a statistical 
perspective, these data present inferential challenges because instead of precise measures, one only has 
information that the value is somewhere between 0 and the DL (below detection limit, BDL). Substitution of 
BDL values, with 0 or the DL can lead to biased parameter estimates and a loss of statistical power. Statistical 
methods that make adjustments when dealing with these types of data, often called left-censored data, are 
available in many commercial statistical packages. Despite this availability, the use of these methods is still 
not widespread in biomedical literature. We have reviewed the statistical approaches of dealing with BDL 
values, and used simulations to examine the performance of the commonly used substitution methods and 
the most widely available statistical methods. We have illustrated these methods using a study undertaken at 
the Vanderbilt-Ingram Cancer Center, to examine the serum bile acid levels in patients with colorectal cancer 
and adenoma. We  have found that the modern methods for BDL values identify disease-related differences 
that are often missed, with statistically naive approaches.
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INTRODUCTION 

Methods that account for left-censoring have been utilized 

by statisticians for many years, particularly for measurement 
of environmental contaminates (e.g., arsenic) in water.[1,2] 
In biomedicine, vaccine studies and HIV[3] have driven 
methodological development. Despite the fact that many 
of the methods are well-established, new applications and 
extensions remain a statistician’s research topic.[4] Recent 
research in biomarker discovery studies has provided a new 
impetus for development of methods.[5,6] This article, and 
the illustrative example, focus on situations where outcomes 
are measured with BDL values. Statistical treatment is 
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similar whether the outcome or the exposure / predictor 
is measured with DL,[7] however, fewer software options 
are available when the exposure is measured with values 
below the DLs.

Reviews of statistical methods for estimation and analysis 
of data with DLs are abundant, particularly in the literature 
of environmental sciences.[8-10] Many of the reviews are 
concerned with estimation and provide estimates of bias 
(difference between the estimated mean under a given 
method and the true mean) and coverage probabilities of 95% 
confidence intervals. We focus our discussion on a subset of 
methods that closely link estimation and hypothesis tests. 
They include substitution, nonparametric, and maximum 
likelihood methods.

SUBSTITUTION METHODS

Naive methods for handling data of this nature include 
deletion or simple substitution with the DL, DL/2, or even 
zero. After substitution, the ‘usual’ statistical methods are 
used to obtain parameter estimates and test hypotheses, for 
example, linear regression and two-sample t-test. Although 
simple to implement, it has been demonstrated that parameter 
estimates resulting from these methods are biased;[8-10] 
furthermore, there is little mathematical justification for their 
use, as pointed out by Slymen.[2] Substitution of a BDL value 
with zero, biases the mean tolower than the true mean and 
substitution with the DL biases the mean to higher than the 
true mean. Substitution with half the DL has been shown 
to have reasonable properties under specific conditions, but 
in general, it has been shown to be biased;[8-10] furthermore, 
Slymen[2] accurately elaborates that this substitution assumes 
that the distribution of the BDL is uniform over the range 
between zero and the DL, and not a standard assumption. 
A very informative and thorough review can be found in 
Helsel.[11] It is noteworthy that the author, Helsel, wrote a 
similar review 15 years ago,[12] and has remarked that within 
the environmental sciences, substitution methods are still 
the most commonly employed. Helsel further points out 
in the earlier work that as methods are easily available and 
given the bias that is induced with estimation by methods of 
substitution, their continued use is simply ‘not defensible’.[12]

Nonparametric methods
Regression on the order statistics (ROS) methods are based 
on a simple linear regression model using ordered detected 
values and distributional (normal) quantiles to estimate the 
concentration of the censored (BDL) values;[13] they are 
also called ‘probability plot methods’.[12] This is actually a 
semi-parametric method, as the quantiles are obtained by 
assuming an underlying parametric distribution for the 

uncensored values. Often the data are transformed before 
the order statistics are obtained. For example, the NADA 
package in R defaults to the log transformation, but other 
transformations could be of interest. Once the censored 
values are estimated, then the usual methods of parameter 
estimation and hypothesis testing are employed. Although 
this method has been shown to be fairly robust to the 
proportion of BDL data, and in the presence of moderate 
skewness, the bias becomes problematic in the presense of 
highly skewed data.[1] Alternative nonparametric methods 
rely on Kaplan-Meier estimates and log-rank or Peto-
Prentice test statistics. [14] The estimates are obtained using 
the usual empirical cumulative distribution function for 
censored data,[15] and the test statistics are the same, as is 
typically used with right- or interval-censored data. As with 
all nonparametric procedures, these estimates are relatively 
unbiased, although the test statistics are not as powerful 
as their parametric counterparts when the underlying 
distribution is known or can be approximated.

Maximum likelihood methods
Maximum likelihood methods are based on approximating 
the distribution of the observed data with a parametric 
distribution. Parameters are estimated to create a distribution 
under which the observations are ‘most likely’. Hypotheses 
regarding plausible values of the parameters may be tested 
with regard to the observed data. The most common 
statistical model for biologic data posits a log-normal (or 
normal) probability distribution. Often the logrithmic 
transformation is preferred to help stabilize the variance 
and reduce large discrepancies in magnitude between 
smallest and largest values. The censoring mechanism can 
be easily incorporated into these parametric models, and 
most commercial statistical packages have some facility 
to estimate and test parameters from these models.[11,16] 
Additional methods that fall under this broad category of 
maximum likelihood include mixture models, and some 
methods of multiple imputation.

Mixture models are useful when the proportion of the 
values of BDL are higher than would be expected under 
other parametric models, or more importantly, when 
there are ‘true’ zero’s in addition to the BDL values due to 
limitations in the assay or measurement technique. One of 
the most common applications for mixture distributions is 
measurement of serum antibody levels in infectious disease. 
In this situation, one may never have been exposed to the 
antigen or have lost acquired immunity, and having no (or 
zero) antibodies is a possibility. The basic approach is to model 
a mixture of two components: One component estimates the 
probability of having no measurable amount, and the second 
describes the distribution for values above the DL. The first 
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component is generally modeled by a binomial distribution 
(sometimes referred to as the Bernoulli component) and the 
second component generally uses the log-normal or normal 
distribution.[3,4] Estimation is performed independently for 
each component and hypothesis testing is done by combining 
the likelihoods for both components. One of the best 
introductions to the approach of combining likelihoods can be 
found in Lachenbruch;[17] although, censoring is not included 
in this description. Finally, another method that is based on 
likelihood is multiple imputation. Multiple imputation (MI) 
methods have become prevalent for use with data having 
missing values.[18] Imputation is used to ‘fill in’ the missing 
(or BDL) values, based on patterns from the non-missing 
data. Although most commonly used commercial statistical 
packages have imputation algorithms, it has been shown that 
these might be inappropriate when ‘missingness’ is due to 
values  BDL.[16] Choosing the appropriate imputation model 
is the key in the utility of these methods, and if the wrong 
imputation model is used, the results are not much better 
than the other approaches described. Also, higher levels of 
censoring will result in greater bias in parameter estimates.

SIMULATION

To demonstrate the properties of competing statistical methods, 
we simulated data from the lognormal distribution and from 
the exponential distribution. For these simulations we were 
interested in estimating mean parameters in two groups and 
testing the differences between the parameters. We examined 
the ‘bias’ (difference between estimated parameter and true 
value from the underlying simulation) and power of the test 
to detect a difference. The underlying parameters for the 
simulation were chosen to provide approximately 80% power 
to samples sizes that were relevant to our bile acid example. 

As the lognormal distribution is the most commonly used 
distribution with biomedical data, the exponential distribution 
provides a useful check for comparison of methods with 
model misspecification. The censored fraction ranges from 
40 to 60%, a fraction commonly observed with bile acid 
measurements. Simulation parameters for the lognormal are 
µ1 = 0.50 and µ2 = 1.0 for the location parameter, and σ1 = 
σ2 = 1.0 for the scale parameter. Subscripts 1 and 2 denote 
the sample group identifier. Simulation parameters for the 
exponential distribution are means of 3 and 5 for groups 1 
and 2, respectively, and a common scale parameter of 1.0. 
All simulations have been repeated 1000 times. We have 
evaluated bias and power under three types of substitution, 
zero, half-DL, and the DL, as well as estimated them under 
KM (using Peto-Prentice test statistics), ROS, and censored 
regression assuming lognormal distribution (labeled ML). 
Table 1 shows the estimated parameters, standard errors, bias 

(difference between true and estimated test statistics) and 
power under the three levels of censoring for substitutions 
from the lognormal distribution. Simulations from the 
exponential distribution can be found in Table 2.

These simulations are similar to those in previous studies.[1,8-

10] When data come from a lognormal distribution, estimation 
(bias) and power (performance of inferential procedure) 
are both maximized. For simulations from a lognormal 
distribution the substitution methods have demonstrated 
decent power to detect pairwise differences. However, there 
is significant bias even at the lower levels of censoring. Both 
ROS and ML methods have performed better than the 
substitution methods in terms of power and bias, although 
ML methods are less biased, regardless of the amount of 
censoring. When underlying simulated data are generated 
from the exponential distribution, the results are mixed. 
Surprisingly, substitution with half-DL has performed as 
well as ML and ROS methods, with regard to bias and with 
little loss of power. We caution the reader, that the positive 
results for this method are likely due to characteristics of our 
underlying model (e.g., the exponential distribution is highly 
right-skewed, which limits the range between zero and the 
DL limit). We do not feel that this behavior will be consistent 
for arbitraty deviations from normality (or lognormality). 
Shumway[1] also shows that ML and ROS methods are 
similar, except in the case of highly-skewed distributions, 
where ML has outperformed the ROS methods. This is 
similar to what we have demonstrated with simulations for 
the exponential distribution. We have observed reduced 
bias in the ML method compared to ROS. Additionally, 
Shumway[1] has observed that the ML methods are biased 
in small samples, with increased censoring. This is also 
consistent with our results. With 60% censoring and relatively 
small sample sizes, power under the ROS methodology is 
greater, and the difference in the bias is quite small.

These simulations demonstrate that ML methods exhibit 
better performance in terms of reduced bias and increased 
power when the underlying distribution is well-approximated 
by a parametric model. When it is not clear that data can 
be modeled using a parametric distribution, either because 
of sample size or distributional assumptions, then ROS 
(or perhaps KM depending on the sample) is a sensible 
alternative. Although not ideal, the parametric ML method 
using the lognormal distribution performs well, with 
respect to power, even when the underlying distribution is 
not lognormal; although the ROS method is clearly more 
powerful. Even as methods for estimation using ROS are 
implemented intostandard software, test statistics based on 
this estimation are not as well developed. A limitation to the 
KM method is that models are limited to one categorical 
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Table 1: Results from lognormal simulation
Censoring rate (percent) Mean 1 SD 1 Mean 2 SD 2 Bias Power

No censoring (complete data) 0.497 0.129 0.990 0.121 0.012 0.798

40 (group1: 49, group2: 30)

Zero 0.650 0.088 1.037 0.099 0.187 0.741

1/2 DL 0.770 0.098 1.111 0.100 0.381 0.737

DL 0.889 0.114 1.185 0.106 0.575 0.705

KM 0.900 0.115 1.193 0.107 0.593 0.726

ROS 0.462 0.181 0.979 0.136 0.059 0.775

ML 0.503 0.146 0.992 0.126 0.011 0.747

50 (group 1 : 60, group 2 : 40)

Zero 0.586 0.086 0.976 0.086 0.110 0.709

1/2 DL 0.808 0.093 1.126 0.093 0.435 0.703

DL 1.030 0.112 1.276 0.112 0.807 0.666

KM 1.048 0.114 1.289 0.114 0.837 0.690

ROS 0.439 0.225 0.971 0.225 0.089 0.742

ML 0.500 0.160 0.990 0.160 0.011 0.715

60 (group 1 : 70, group 2 : 51)

Zero 0.500 0.084 0.885 0.084 0.115 0.672

1/2 DL 0.848 0.089 1.139 0.089 0.488 0.675

DL 1.197 0.111 1.393 0.111 1.090 0.614

KM 1.225 0.114 1.412 0.114 1.137 0.653

ROS 0.402 0.295 0.960 0.295 0.138 0.719

ML 0.492 0.183 0.986 0.183 0.022 0.677

Zero (substitution by zero), 1/2 DL (substitution with half-DL), DL (substitution with DL), KM (Kaplan-Meier), ROS (regression on order statistics), and ML 
(maximum likelihood, lognormal distribution with left-censoring)

Table 2: Results from exponential simulation
Censoring rate (percent) Mean 1 SD 1 Mean 2 SD 2 Bias Power

No censoring (complete data) 2.997 0.384 5.000 0.605 0.003 0.819

40 (group 1 : 48, group 2: 32)

Zero 2.578 0.379 4.709 0.607 0.713 0.816

1/2 DL 3.045 0.385 5.022 0.605 0.067 0.820

DL 3.512 0.406 5.336 0.608 0.848 0.804

KM 3.533 0.408 5.360 0.610 0.894 0.709

ROS 3.141 0.406 5.137 0.614 0.278 0.830

ML 3.066 0.388 5.049 0.606 0.115 0.823

50 (group 1: 59, group 2 : 41)

Zero 2.321 0.374 4.500 0.607 1.179 0.802

1/2 DL 3.107 0.389 5.049 0.606 0.156 0.804

DL 3.893 0.438 5.598 0.619 1.491 0.792

KM 3.940 0.447 5.642 0.627 1.582 0.710

ROS 3.207 0.431 5.202 0.623 0.409 0.822

ML 3.148 0.398 5.108 0.609 0.257 0.809

60 (group1: 70, group 2 : 51)

Zero 1.992 0.370 4.200 0.600 1.808 0.793

1/2 DL 3.225 0.395 5.100 0.608 0.324 0.793

DL 4.457 0.483 6.000 0.644 2.457 0.772

KM 4.557 0.498 6.076 0.654 2.633 0.727

ROS 3.291 0.477 5.283 0.642 0.574 0.814

ML 3.299 0.412 5.219 0.616 0.518 0.800

Zero (substitution by zero), 1/2 DL (substitution with half-DL), DL (substitution with DL), KM (Kaplan-Meier), ROS (regression on order statistics), and ML (maximum likelihood, 
lognormal distribution with left-censoring)
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Table 3: Sample demographics
Group

Normal N = 50 Adenoma N = 31 Cancer N = 96

Agea 63.9 ± 8.8 63.2 ± 12.2 61.8 ± 12.1

Sex Male 58% (29) 48.3% (15) 62.5% (60)

Cancer Stage 1 29.2% (28)

Stage 2 18.8% (18)

Stage 3 24.0% (23)

Stage 4 28.1% (27)

Adenomab Villous 14.2% (4)

Tubulovillous 57.1% (16)

Tubular 17.9% (5)

Serrated 10.7% (3)

Largec 44.0% (11)

a Mean ± standard deviation, b N = 28, one FAP patient, one patient with polypoid hyperplasia, and one patient with a missing pathology report removed for these calculations.  
c N = 27, one patient missing size information.

Table 4: Percent values below DL for each group
Bile Acid Normal 

N = 50 (%)
Group Adenoma 

N = 31 (%)
Cancer  

N = 96 (%)
CA 46 42 44

CDCA 62 55 47

DCA 18 19 23

LCA 46 29 44

UDCA 70 71 59

covariate. Overall, even with relatively small sample sizes 
and 60% censoring, ML methods perform adequately, even 
with a misspecified distribution. Our suggestion would 
be to perform a sensitivity analysis when distributional 
assumptions are questionable, to assess the performance of 
the estimation procedures; when there is a large difference 
between methods a trade-off will need to be made between 
power and bias. In all cases, we recommend ceasing the use 
of substitution methods for data with DL.

EXAMPLE: BILE ACIDS

Background
Nutritional factors such as a diet high in fat have been 
associated with colon cancer development.[19] A number of 
studies have suggested that elevated levels of secondary bile 
acids (BAs) may be in part responsible for this association. [20] 
In response to fat intake, BAs are secreted to aid in the 
absorption of cholesterol and fat-soluble vitamins.[21] BAs 
exist in several forms. The primary BAs such as cholic acid 
(CA) and chenodeoxycholic acid (CDCA) are derived from 
cholesterol in the liver and are secreted in the bile, mainly as 
glycine or taurine conjugates. In the colon, secondary bile 
acids, deoxycholic acid (DCA) and lithocholic acid (LCA), 
are formed from conjugated forms of CA and CDCA, 
respectively, through deconjugation and dehydroxylation, by 

the anaerobic bacterial flora. Subsequently, the tertiary bile 
acids, ursodeoxycholic acid (UDCA) and sulpho-LCA (SLCA) 
are formed through epimerization of CDCA or sulfation of 
LCA. BAs are absorbed from the intestines into the portal blood 
system via ‘enterohepatic circulation,’ resulting in circulating 
concentrations of 0.01 – 0.02 mmol/l, predominantly bound 
to albumin. In the circulation, CA and CDCA each comprise 
of about 30 – 40%, DCA about 20 – 30%, and LCA < 5% of 
the total amount of detectable BAs. DCA and LCA, the main 
fecal bile acids, are suspected to be the forms of bile acids that 
are implicated in colorectal carcinogenesis.

Several epidemiological studies indicate an association 
between BAs and colorectal cancer. Elevated fecal levels of 
the secondary BAs[22] with higher fecal LCA / DCA ratios[23] 
are seen in patients with colorectal cancer, as compared to 
healthy volunteers. Additionally, male patients with colon 
adenomas have higher serum levels of DCA than control 
patients with negative colonoscopies.[24] These studies, 
however, have measured levels of only a few select BAs. 
Using a sensitive HPLC-mass spectrometry assay, we 
simultaneously determined the serum levels of all major BAs 
in healthy volunteers and patients with colorectal ademonas 
and cancers of all clinical stages. A recent review article lays 
out a strong Darwinian argument for the accumulation of 
damage from high levels of bile acids as a strong risk factor 
for GI cancer.[25] Given this evidence, we wish to closely 
examine the difference in serum bile acid concentrations 
in three groups of patients, those with colorectal cancer, 
adenomatous polyps, and normal colorectal mucosa.

MATERIALS AND METHODS

Patient samples
Serum samples from patients with normal colonoscopies, 
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Table 5: Means and P-values for overall tests and tests for trend
Bile Acida Means in nM (95% CI) P-value (Adjusted) P-value (Zero)

Normal 
N = 50

Adenoma 
N = 31

Cancer 
N = 96

Overall Trend Overall Trend

CA 9.06 (5.22, 15.73) 14.87 (10.03, 22.05) 14.87 (10.03, 22.05) 0.3302 0.1477 0.4531 0.2094

CDCA 9.56 (5.05, 18.11) 19.37 (9.17, 40.93) 24.39 (15.95, 37.37) 0.0410 0.0137 0.0708 0.0227

DCA 35.80 (21.95, 58.39) 83.46 (45.03, 154.68) 63.91 (44.85, 91.07) 0.0683 0.0952 0.2673 0.2914

LCA 9.11 (5.05, 13.17) 12.74 (9.64, 15.83) 13.26 (10.53, 15.97) 0.0271 0.0519 0.0700 0.1439

UDCA 3.86 (1.81, 8.25) 3.67 (1.44, 9.40) 7.84 (4.65, 13.20) 0.1354 0.0452 0.1531 0.0778

a DLs for each BA: CA (11.1 nM), CDCA (20 nM), DCA (12.9 nM), LCA (5 nM), and UDCA (11.8 nM)

Table 6: Kendall’s Tau correlation coefficients
CA CDCA DCA LCA UDCA

CA 0.47 0.25 0.11 .026

CDCA 0.40 0.23 0.36

DCA 0.53 0.28

LCA 0.21

UDCA

adenomatous polyps, and colorectal cancers were collected 
from 2001 – 2007 at Vanderbilt University Medical Center. 
In addition, tumor specimens of a majority of colon cancer 
patients were also collected at the time of operation. In total, 
serum from 177 patients was collected. This included, 50 
normal patients, 31 with adenoma, and 96 with colorectal 
cancer. This was a cross-sectional sample, there was no 
matching or sampling procedure performed.

Sample processing
Using a sensitive HPLC-mass spectrometry assay, we 
analyzed a portion of our collected samples for their serum 
levels of major BAs in their unconjugated, as well as glycine- 
and taurine-conjugated forms (15 individual BAs). For the 
purpose of illustration of the methods described here, we 
will focus only on the unconjugated BAs in this manuscript. 
The serum samples (100 µL) were processed by mixing them 
with an equal volume of D4-CDCA (1 µM) as an internal 
standard and subsequently with 1 mL of ice-cold acetonitrile 
(CH3 CN). The supernatant fraction was separated by 
centrifugation at 13,000 g for 20 minutes and evaporated to 
dryness using Speed-Vac. The samples were reconstituted 
using 150 µl of the mobile phase. Calibration samples 
containing known concentrations of five major bile acids were 
processed simultaneously with the patient serum samples.

Liquid chromatographic conditions and mass 
spectrometric detection
Analyses of serum BAs were carried out using a Surveyor 
HPLC system (Thermo-Electron) and mass spectrometric 
detection was performed using an LTQ mass spectrometer 
(Thermo-Electron) equipped with a standard API-1 
electrospray source. To maintain maximum sensitivity, the 

selected ion monitoring (SIM) parameters for the detection 
of each bile acid were optimized. An Acquity BEH C18 
column (1.0 mm x 10 mm, 1.7 µm, source) was used for all 
chromatographic separations. The column and autosampler 
tray temperatures were maintained at 60ºC and 10ºC, 
respectively. The mobile phases were made up of 10 mM 
tributyl ammonium acetate in (A) H2 O / CH3 CN(5:95) 
and in (B) H2O/CH3CN (95:5). Gradient conditions were 
as follows: 0 – 0.5 minutes, B = 32.5%; 0.5V – 5 minutes, B 
= 32.5 – 57.5%; 5 – 5.25 minutes, B = 57.5 – 100%; 5.25 – 
8 minutes, B = 100%; 8 – 8.25 minutes, B = 100 – 32.5%; 
8.25 – 13 minutes, B = 32.5%. The flow rate was maintained 
at 200 µL / minute. The total chromatographic run time 
was 13 minutes. The sample injection volume was 5 µL. 
The autosampler injection valve and syringe needle were 
flushed and rinsed with H2 O / CH3 CN (1 : 1) between 
each injection. The mass spectrometer was operated in the 
negative ion mode. Quantitation was based on selected 
reaction monitoring for the corresponding m / z ratios of each 
bile acid. Data acquisition and quantitative spectral analysis 
were conducted using Thermo-Finnigan Xcaliber version 2.0 
and Thermo-Finnigan LCQuan version 2.5, respectively. The 
calibration curves were constructed by plotting the peak area 
ratios of each bile acid over the internal standard (D4-CDCA) 
against the analyte concentrations for a series of BA standards.

Statistical analysis
Our primary interest is to test whether there are statistically 
significant differences in the mean BA concentrations 
between normal, adenoma, and cancer patients. We are 
interested both in pair-wise differences as well as a trend 
from normal to cancer. We used ML (censored lognormal 
or mixture distribution) methods to estimate the means 
and their 95% confidence intervals, unless there was reason 
to believe that the data were markedly not lognormally 
distributed. We used the F-statistic to test the overall 
and trend when ML methods based on the lognormal 
distribution were used; the Peto-Prentice test was used for 
any BA that was estimated by KM methods and a likelihood 
ratio χ2 test statistic was applied for mixture models. We 
performed two types of hypothesis tests, pair-wise tests 
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Figure 1: Histograms for log transformed bile acid concentrations (nM) for all patient groups
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to assess differences between any two patient types (e.g., 
normal versus cancer) and a test for linear trend going 
from normal to cancer. To examine the distribution of the 
bile acids (as well as demonstrate the proportion of values 
below the DL) we examined histograms for each bile 
acid by patient group. Lognormal probability plots, along 
with 95% confidence intervals were used to judge the fit 
of the lognormal distribution to each BA. The difference 
between the observed proportion of BDL and the expected 
probability of BDL under a censored lognormal distribution 
was calculated for each bile acid. A difference greater 
than 0.1 indicated that a Bernoulli / lognormal mixture 
distribution should be used to estimate test group-wise 
differences.[3] We also examined the correlation between 
each unconjugated BA and the other BAs using a Kendall’s 
tau correlation coefficient, per Akritas.[26] We examined BA 
concentration differences in adenomas less than 3 cm versus 
those greater than 3 cm, as a proxy for advanced stage, and 
between stages in cancer samples. Analyses were done in R 
version 2.8.0 (www.r-project.org) and SAS version 9.2 (SAS 
Institute, Carey NC).

RESULTS

Demographic and sample information can be found in 
Table  3. The pathological stage and adenoma subtype were 
based on a medial record search and was not obtained as part 

of the serum collection. Large adenomas were defined as any 
adenoma greater than 3 cm. Within the adenoma group there 
was one FAP patient, one patient with polypoid hyperplasia, 
and one patient missing a pathological record.

Figure 1 shows the histograms for each of the bile acids for 
each patient type (Normal, Adenoma, Cancer); the light gray 
bar between 0 and 1 denotes the proportion of samples that 
fall below the DL, the actual percentages are listed in Table 4.

The probability plots indicated that the distributions 
for LCA and UDCA concentrations depart from the 
lognormal distribution (not shown), as demonstrated by 
the lack of fit of the points to the 45° line. Furthermore, 
for UDCA, the differences in the observed and expected 
probability was 0.144, which indicated a larger-than-
expected proportion of censoring, necessitating the need 
for mixture distribution modeling. We compared the 
estimates (and test statistics) from the ROS, KM, and 
ML methods for LCA, and the estimates were identical 
across the methods. Therefore, we decided to use the ML 
methods, despite the indication of a slight departure from 
the lognormal distribution.

We investigated by using mixture models to estimate the test 
differences in the UDCA concentrations. We used the Akaike 
Information Criterion (AIC) as a metric to choose between 

Figure 2: Mean concentration levels for each bile acid and 95% confidence intervals. These were obtained using censored lognormal models, the 
confidence intervals were not symmetric because the estimates were back-transformed from the log scale. (a) Sample sizes were 26, 18, 21, and 24 
for Stages 1, 2, 3, and 4, respectively. P-values were 0.7413, 0.5963, 0.6168, 0.7371, and 0.2098 for CA, CDCA, DCA, LCA, and UDCA, respectively. 
(b) Sample sizes were 14 and 11 for Not Large and Large, respectively. The P-values were 0.5209, 0.3102, 0.1475, 0.4341, and 0.9001, respectively.
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models (Akaike, 1974). The AIC combines a model goodness-
of-fit measure (the log likelihood) with a penalty for the 
number of parameters. Models can be ranked according to 
AIC, and the smallest AIC is the ‘best’ fitting model. From 
these comparisons there is no evidence to suggest that adding 
a Bernoulli component is necessary. Therefore, we have used 
ML estimation and hypothesis tests for this BA.

Table 5 shows the overall means for each BA, as estimated by 
modeling using the censored lognormal distrubution along 
with 95% confidence intervals for each patient group. There 
were higher mean DCA levels in adenoma and cancer patients 
compared to normal subjects, however, this difference was not 
statistically significant. It is likely that this was due to a high 
variability in this BA (demonstrated by very large confidence 
limits). LCA and CDCA showed statistically significant 
differences between the groups, with pairwise differences 
between normal versus cancer for CDCA (P-value = 0.0100) 
and between normal and both cancer and adenoma (P values 
= 0.0326 and 0.0059, respectively) for LCA. All p-values 
shown in Table 4 are based on test statistics from ML method 
(assuming a lognormal censored distribution) as well as ‘straw 
man’ P-values when substitution by zero was used. Note that 
if the values below the DL had been replaced by zeros, the 
statistically significant difference in LCA would not have been 
detected. CDCA, LCA, and UDCA, all showed statistically 
significant increasing trends in the mean concentrations 
going from normal to adenoma to cancer. Again, DCA also 
exhibited this trend, but with the high degree of variability 
present, it was not statistically significant.

We also tested the mean differences in BA concentrations for 
each of the four cancer stages and between them. However, 
the sample sizes for these subgroups were small (28, 18, 23, 
and 27 for stages 1 – 4, respectively) and we were not able 
to detect any statistically significant differences. Graphical 
representation of these means and 95% confidence intervals 
can be found in Figure 2. Mean LCA, CDCA, and UDCA 
concentrations for stage 4 are higher than for stages 1 – 3. 
Although CA concentrations are lower in stage 1 than all 
other stages, DCA concentrations show a general trend for 
increasing levels for stages 2 – 4, while stage 1 has mean 
concentration levels similar to stage 4. Similar to the patient 
group analyses, this BA has exhibited a large degree of 
variability, resulting in wide confidence limits.

The sample size was not large enough to examine adenoma 
subtypes, however, we used the adenoma size as a proxy 
for advanced adenoma (large adenomas were those 
larger than 3 cm). There were no statistically significant 
differences between large and not large adenomas, the mean 
concentrations and 95% confidence intervals for each bile acid 

can be found in Figure 2. The mean levels in DCA were lower 
for large adenomas, 46.92 nM (95% confidence interval: 
15.51, 142.00), compared to 137.81 nM (95% confidence 
interval: 52.97, 358.54), but there was a lot of variability in 
concentrations, in both groups. The analysis did not include 
two patients with three and four polyps,  the FAP patient, 
or the patient with polypoid hyperplasia, and there was one 
patient with missing pathology data.

Finally, we wanted to test the correlation between all five 
unconjugated BAs. We used Kendell’s tau, which is a measure 
of concordance between two measures. Kendell’s tau is based 
on ranks, and it adjusts for ties when many observations have 
the same value. Table 6 shows the correlation matrix for the 
BAs. The highest correlation, and only correlation above 
0.5, is between LCA and DCA, the two most common BAs 
associated with colon cancer.

DISCUSSION

We have described the most commonly used methods for 
summarizing and analyzing data with BDL values. We 
used a simulation study to demonstrate the properties of 
these methods, particularly compared to the frequently 
used substitution methods. For the most part, when the 
underlying distribution could be described using a parametric 
distribution (normal, lognormal, Weibull, etc.) the ML 
methods worked best for censored data; meaning they had 
the lowest bias and highest power. When there was a large 
amount of skewness, the ML methods were still a viable 
alternative, although in special cases their advantage over 
nonparametric, or even substitution methods, was unclear. 

As ML methods are easy to implement in most commercial 
statistical software, there is little reason for the continued use 
of naive substitution methods for data with observed DLs. 
There are cases when more sophisticated models must be 
used; and determination of when their use is required is both 
conceptual (depends on what is being measured and whether 
true zeros are expected) and statistical (whether there appear 
to be a greater than expected number of BDL values). For 
most practical problems, especially with a large percentage 
of BDL values, we do not advocate the use of MI methods 
with these types of data.

As an example, we examined the serum levels of five common 
unconjugated primary and secondary BAs from a population 
of patients with cancer and adenomous polyp disease, and 
compared them with serum from patients with normal 
colonoscopy. We used a combination of graphical methods 
(histograms and quantile–quantile (QQ) plots) for testing 
the probability of higher than expected proportion of BLD 
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values, to choose between ML, mixture distributions, or 
nonparametric methods of estimation and testing for group 
differences. We found statistically significant differences in 
CDCA concentration levels between normal and cancer 
groups, and between normal and both adenoma and cancer 
in LCA. We found a statistically significant increasing trend 
in concentrations (from normal to adenoma to cancer) for 
CDCA, LCA, and UDCA BAs. Of note, and pertinent to 
the actual focus of this manuscript, differences in LCA and 
the significant trend in CDCA would not have been detected 
if substitution by zero was utilized as the analytic method. 
We expected to see differences in the DCA concentration 
between the normal and cancer, and possibly between the 
normal and adenoma groups, but because of the high degree 
of variability in these measures we were unable to detect a 
statistically significant difference.

We did not find a strong pairwise correlation between these 
five BAs. A possible explanation is that the multivariate 
relationship between these BAs is ‘compositional’ in nature; 
compositional data arise when the total amount is fixed and 
variability is observed in the relative amounts of the different 
forms. Therefore, as one BA concentration increases the 
others would need to decrease, and large positive correlations 
are tempered by the fixed total.

This particular example, although pertinent to the discussion 
of prevention of colon cancer, was used primarily for 
illustrative purposes. Our future work will be to investigate 
all 15 BAs, the five unconjugated forms along with their 
glycine- and taurine-conjugated forms. Primary hypotheses 
include the examination of how these conjugated forms differ 
between patient groups, as well as their relationship with the 
unconjugated forms. These investigations will necessitate 
the development of new statistical methods, or an extension 
of the existing methods. Furthermore, we are interested in 
investigating the utility of using serum BA concentration as 
a predictor, or classifier, for cancer. Characterizing data when 
the predictor has DL remains an open statistical research 
topic. Addtionally, we are currently working on evaluating 
the predictive ability of BA concentrations for adenomous 
polyp disease and cancer. All of these future considerations 
will necessitate the implementation of current statistical 
methodologies, as well as extentions and novel strategies. 
Knowledge of appropriate statistical methods is an important 
aspect of all cancer research.
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