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Abstract
Prostate cancer is the leading non-skin malignancy detected in US males and the second cause of death due to 
male cancer, in the US. Interventions with drugs or diet supplements that slow down the growth and progression 
of prostate cancer are potentially very effective in reducing the burden of prostate cancer, particularly if these 
treatments also prevent the de novo development of new prostatic malignancies. Challenges to identify efficacious 
agents and develop them for chemopreventive application in men at risk for prostate cancer have included 
uncertainty about which preclinical models have the ability to predict efficacy in men and lack of consensus 
about which early phase clinical trial designs are the most appropriate and cost-effective to test promising 
agents. Efficacy studies in animal models have identified several agents with potential chemopreventive activity 
against prostate cancer, but few of these findings have been translated into clinical trials. This article identifies 
some of the major issues associated with prostate cancer chemoprevention research and summarizes the 
most significant current results from animal efficacy studies and human clinical prevention trials. This summary 
focuses on: (1) Naturally occurring agents and compounds derived from such agents, including green tea 
and its constituents, silibinin and milk thistle,  and genistein and soy, (2) chemoprevention drugs including 
agents interfering with androgen action, and (3) antioxidants such as selenium, vitamin E, and lycopene. The 
general lack of activity of antioxidants is discussed, followed by considerations about translation of preclinical 
chemoprevention efficacy data, focusing on dose, form, bioavailability, and timing of administration of the agent, 
as well as discussion of study design of clinical trials and the predictive ability of preclinical models.
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INTRODUCTION

Prostate cancer is the leading non-skin malignancy detected in 
US males and the second cause of death due to male cancer, 

in the US.[1] The disease typically develops and progresses 
slowly over a period that may include decades. There are 
reports indicating that about 30% of US men between the 
ages of 20 and 40 years have microscopic size cancers in their 
prostate.[2] Thus, interventions with drugs or diet supplements 
that slow down the growth and progression of these small 
tumors are potentially very effective in reducing the burden 
of prostate cancer, particularly if these treatments also prevent 
the de novo development of new prostatic malignancies.[3,4] 
The challenge has been to identify efficacious agents and to 
develop them for chemopreventive application in men at risk 
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for prostate cancer. One problem is the uncertainty about 
which preclinical models have the ability to predict efficacy 
of agents in men. Another difficulty has been the lack of 
consensus about which early phase clinical trial designs are the 
most appropriate and cost-effective to test promising agents, 
before embarking on hugely expensive, large, randomized 
prevention clinical trials, with cancer detection as endpoint.

Several approaches have been used to select candidate 
agents for efficacy testing. One approach is to select agents 
that have been active for other cancer sites, but with a few 
exceptions this has not been very successful. Efficacy studies 
in animal models have identified several agents with potential 
chemopreventive activity against prostate cancer,[5] but few 
of these findings have been translated into clinical trials. The 
purpose of this article is to identify some of the major issues 
associated with prostate cancer chemoprevention research 
and to provide a summary of the most significant current 
results from animal efficacy studies and human clinical 
prevention trials, but not to provide an exhaustive summary 
of all such studies. There are many studies on the effects of 
various compounds on the growth of prostate cancer cells 
in vitro or when xenografted into immunodeficient mice. 
Such cell models are useful for studying the molecular 
mechanisms of chemoprevention agents. However, they are 
relevant to therapy, but not prevention, as the vast majority 
of these models involve cells derived from metastatic prostate 
cancer deposits and none reflect the early stages of prostate 
carcinogenesis, and will not be discussed here. 

NATURALLY OCCURRING AGENTS AND 
COMPOUNDS DERIVED FROM NATURALLY 
OCCURRING AGENTS

Green tea and its constituents
Green tea polyphenols have been reported to inhibit tumor 
development in the so-called transgenic adenocarcinoma of 
the mouse prostate (TRAMP) model,[6] but unpublished data 
from other investigators suggest that this finding has been 
difficult to reproduce and may be restricted to prevention 
of early stage tumors and treatment that begins before the 
onset of puberty.[7,8] Partly published studies with other in 
vivo prostate cancer models using rats, in our laboratory, 
were uniformly negative for green tea extract.[9,10] The 
activity of green tea polyphenols in the TRAMP model may 
be related to the known inhibitory effects of the green tea 
catechin epigallocatechin-3-gallate (ECGC) on the activity 
of the enzyme 5α-reductase, which converts the male sex  
hormone  te s tos terone  to  the  ac t ive  androgen 
5α-dihydrotestosterone.[11] Also, the expression and 
activity of the androgen receptor is attenuated by green 
tea polyphenols and catechins.[8,12,13] The expression and 

activity of the oncogenic SV40-large and small T antigens 
(SV40-Tag) in the TRAMP model are targeted to the 
prostate by the probasin gene promoter, which is under 
the control of the androgen receptor. Therefore, it is 
probable that the green tea polyphenols interfered with 
the expression of the SV40-Tag at a critical moment and, 
thereby, prevented the oncogenic events to take place in this  
model.[14] Consistent with this notion, protein expression of 
SV40-Tag was not detectable in the prostate of TRAMP mice 
that did not develop tumors following ECGC treatment, 
but was detectable in those prostate tumors that were 
not prevented by this agent,[15] although others[8] did not 
find effects of ECGC on the protein expression of SV40-
Tag in the TRAMP model. The major drawbacks of the 
TRAMP model are its aggressiveness and the predominantly 
neuroendocrine phenotype of the tumors that develop,  
which are not frequent in humans, who mostly develop 
adenocarcinomas.[16] Lesions in this model, that resemble 
high-grade prostate intraepithelial neoplasia (PIN) found 
in the human prostate, do not appear to progress to 
adenocarcinoma,[16] casting some doubt on the relevance of 
the TRAMP model.

A randomized placebo-controlled clinical trial of 12 months 
intervention, with a green tea catechin mixture (600 mg / 
day), was conducted in men with elevated prostate-specific 
antigen (PSA) and high-grade PIN on biopsy, but no cancer. 
Follow-up biopsies at 6, 12, and 24 months were carried 
out in the treatment arm (n = 30, 30, and 13, respectively) 
and the placebo arm (n = 30, 24, and 9, respectively). A 
statistically significant reduction in the detection of prostate 
cancers, from 30 to 3.3% at 12 months and 53 to 11% at 24 
months, was found in the treated men compared to men on 
placebo.[17,18] On account of the small number of subjects, 
the short duration of this trial, and the inherent sampling 
problems associated with prostate biopsies, these findings 
should be considered preliminary and await reproduction. In 
summary, there are mixed findings from animal studies about 
the preventive efficacy of green tea and its constituents, while 
there are human data suggestive of the protective activity of 
green tea catechins against prostate cancer. Further human 
studies are needed to firmly establish whether green tea can 
prevent prostate cancer. 

Silibinin and milk thistle
Silibinin derived from Silybin or extract from the milk thistle 
plant has been show to inhibit prostate tumor formation in 
the TRAMP model,[19] but this effect appeared to be limited 
to inhibition of the growth of established prostate neoplasms 
late in the process of tumor progression.[20,21] This suggests 
that the effects of silibinin in the TRAMP model are more 
of a therapeutic nature than chemopreventive. Importantly, 



129

Journal of Carcinogenesis 2011,10:27 	 http://www.carcinogenesis.com/content/10/1/27

Journal of Carcinogenesis  
A peer reviewed journal in the field of Carcinogenesis and Carcinoprevention

silibinin did not appear to reduce the expression of the SV40-
Tag.[19] On basis of these findings and the absence of toxic 
or carcinogenic effects of milk thistle,[22] a small placebo-
controlled phase I / II clinical trial with a silibinin-containing 
milk thistle preparation was conducted in men, prior to 
radical prostatectomy for prostate cancer.[23] Although the 
dose of this preparation was high (a total of 13 g ingested daily 
for two weeks), most of the six treated subjects reported only 
mild grade 1 or 2 adverse events; one subject experienced a 
postsurgical grade 4 thromboembolic event, which may have 
been associated with the treatment. No adverse events were 
reported for the six control subjects. Serum concentrations 
of silibinin reached 20 – 23 μM, but tissue levels were 
extremely low, ranging from undetectable to no more than 
0.5 nM. There were no effects of the treatment on serum 
levels of IGF-1 and IGFBP-3, nor were there effects on the 
labeling index for Ki-67 and caspase-3 and COX-2 positive 
cells in prostate tissue. These human data do not provide 
support for the notion that silibinin or milk thistle prevent 
prostate cancer.

Genistein and soy
We and others have shown that dietary exposure to soy 
isoflavones, the Bowman-Birk protease inhibitor occurring 
in soy, and whole soy protein inhibit prostate carcinogenesis 
induced by carcinogens plus hormones in adult rats and in the 
TRAMP mouse model and a similar rat model.[24-32] However, 
there are reports that in the TRAMP model the major soy 
isoflavone genistein at lower, nutritionally relevant, doses 
stimulated carcinogenesis and greatly enhanced metastatic 
capacity.[33,34] Clearly, both the dose and form of the agent 
as well as probably the timing of administration are critical 
determinants for whether genistein, and by inference soy, 
have cancer-preventive effects or enhance prostate cancer 
development. The anti-cancer effects of genistein have 
been attributed to its known inhibitory effects on tyrosine 
kinase, topoisomerase II, 5α-reductase, and angiogenesis, 
and its activation of several growth factor receptor pathways, 
but most of these effects, particularly those on tyrosine 
kinase activity, occur only at non-physiologically high 
concentrations.[35-38] At low, physiological concentrations 
genistein binds to both the estrogen receptors (ER)-α and 
-β, with a greater affinity for ER-β, and genistein is thought 
to probably exert some or most of its effects through 
ER-β.[39] How genistein might elicit proliferative, rather 
than anti-proliferative effects on prostate cancer cells at 
low doses is uncertain. Genistein also has an antioxidant 
activity (see later in the text) and may inhibit carcinogenesis 
via protection of cells against oxidative stress.[35,40-42] The 
other major soy isoflavone, diadzein, is far less biologically 
active. Daidzein, but not genistein, is converted to equol by 
intestinal microbes in 30 – 60% of humans, a phenomenon 

that appears to be quite stable within a given individual.[43,44] 

This daidzein metabolite has significant estrogenic and anti-
androgenic activities, including prostatic effects in rats.[45-47] 
It is conceivable that the chemopreventive activity of soy 
isoflavones may differ in men who produce equol and those 
who do not and that is related to the hormonal properties of 
equol,[44] but this has not be explored to date. 

There are several reports of placebo-controlled clinical trials 
with soy products, often enriched for isoflavones. In healthy 
men (i.e., men without detected prostate cancer) soy does not 
seem to affect the serum levels of PSA.[48,49] Also, in men with 
a rising PSA after local radiation or surgical therapy, soy does 
not appear to significantly affect the serum PSA levels,[50-52] 

which we confirmed [Bosland, unpublished data]. Studies on 
the effects of soy on PSA without placebo control or cross-
over designs and trials with complex mixtures containing 
soy have also been reported,[53-57] but are not discussed 
here, because their results are difficult to interpret. Most 
interesting are the few studies, reported to date, on changes 
in prostate tissue biomarkers following intervention with 
soy in placebo-controlled trails, but unfortunately there is 
no clear pattern of changes that has yet emerged.[58-60] In a 
placebo-controlled clinical trial with men diagnosed with 
high-grade PIN on biopsy, a supplement mixture of selenium 
and soy (exact preparation was not defined for either in the 
article) was provided for three years, together with alpha-
tocopherol, but the cumulative incidence of prostate cancer 
was not affected,[57] casting doubt on the ability of soy to affect 
prostate cancer development.

Other naturally occurring agents
There is a large literature on the potential to prevent or treat 
prostate cancer with vitamin D or vitamin D analogs,[61] but 
there is increasing evidence to dispute this notion,[62,63] and 
there is the problem of toxicity of vitamin D and analogs that 
limit their application in humans. A 1,25(OH)2D3 analog 
has not been active when given mixed into the diet in a 
TRAMP-like mouse model,[64] but systemic administration 
of 1,25-D3 inhibited the development of PIN-like lesions in  
mutant mice lacking both Pten and Nkx3.1 genes.[65] There 
are no other animal studies with appropriate models and we 
will not further discuss vitamin D chemoprevention here. 
Curcumin, derived from turmeric, has in vitro properties 
that are consistent with cancer inhibiting activity, but it is 
poorly bioavailable in vivo.[66] Nonetheless, dietary curcumin 
inhibited tumor development in the TRAMP model, as did 
phenylethylisocyanate (PEICT), which occurs naturally in 
cruciferous and other vegetables.[67] However, in a chemically 
induced rat prostate cancer model, dietary curcumin has not 
been active.[68] Resveratrol, which occurs in grape seeds and 
red wine inhibited late stage tumor development in TRAMP 
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mice,[69] and had marginal inhibitory activity in a similarly 
aggressive SV-40-based model in rats.[70] Pomegranate extracts 
and juice have anticancer-like activity in cell models, but has 
not been tested in vivo.[71] None of these substances have been 
tested in human studies. 

CHEMOPREVENTION DRUGS

Agents interfering with androgen action 
Agents interfering with androgen action, such as androgen 
receptor blockers or 5α-reductase inhibitors, have been 
very effective in preventing prostate cancer development 
in most, but not all, appropriate animal models.[5,72-74] The 
5α-reductase-type 2 inhibitor finasteride and 5α-reductase-
type 1 and 2 inhibitor dutasteride have each been tested in 
a large clinical trial, named the Prostate Cancer Prevention 
Trial (PCPT) and the Reduction by Dutasteride in Prostate 
Cancer Events (REDUCE) trial, respectively.[75,76] In both of 
these studies, a reduced risk of developing prostate cancer by 
23 – 24%, over a four-to-seven-year intervention period, was 
seen in men at average risk of prostate cancer (finasteride) 
or high risk men (dutasteride).[77,78] Both agents exerted the 
strongest preventive effect on low-grade prostate cancer, 
whereas, for high-grade cancer there was no protective effect 
in the dutasteride trial (Gleason score 7 or higher) and a 
small, but significant, increased risk in the finasteride trial 
(Gleason score 8 or higher). These findings have been hotly 
debated in the literature and explanations for the increased 
risk of high-grade cancer in the finasteride trial have been  
developed.[79-81] Neither agent is currently approved by the US 
FDA for the prevention of prostate cancer, and a long-term 
follow-up of finasteride study participants is still ongoing 
which will allow to observe their response to hormone 
ablation therapy, if recurrence develops. Nevertheless both 
studies do provide evidence in support of androgen action 
as an important and biologically plausible potential target for 
chemoprevention of prostate cancer.

Other drugs
Dehydroepiandrosterone (DHEA), which is strongly 
inhibitory in mammary cancer models, also inhibited prostate 
cancer induction in rats with a combination of chemical 
carcinogen treatment (methylnitrosourea) and long-term, 
low-dose testosterone administration, via slow release Silastic 
implants.[82] Fluasterone, a non-hormonally active fluorinated 
analog of the androgen precursor DHEA, was also inhibitory 
in the latter model.[83] One of the most active inhibitory 
compounds was the pan-retinoic acid receptor (RAR and 
RXR) agonist 9-cis-retinoic acid, which reduced prostate 
cancer incidence in the above-mentioned rat model by more 
than 70%.[84] Unfortunately, 9-cis-retinoic acid is too toxic 
to be considered for application in humans in a prevention 

setting and Fluasterone is currently not available for clinical 
studies. The retinoid-like agent N-(4-hydroxyphenyl)all-
trans-retinamide (4-HPR) was not efficacious in this rat 
model,[85] and in two small clinical trials no evidence was 
found of its protective activity.[86,87]

ANTIOXIDANTS 

Oxidative stress generating reactive oxygen species (ROS) has 
the potential to cause oxidative DNA damage and has been 
associated with the causation of human cancer, including prostate  
cancer.[88-90] One mechanism by which ROS may be produced 
and leads to cancer is inflammation, which has been implied 
in the etiology of several major human malignancies, 
including prostate cancer.[91,92] Basic research and many 
epidemiological studies have suggested the cancer preventive 
activity of several antioxidants. This notion has been the 
basis of the hypothesis that dietary antioxidants may prevent 
cancer, which has been tested in several randomized clinical 
trials (RCTs) and preclinical model studies. The ability to 
prevent lung cancer of beta-carotene, which quenches ROS, 
and alpha-tocopherol (vitamin E), that interferes with ROS-
induced lipid peroxidation, has been tested in an RCT with 
smokers. However, beta-carotene increased the risk of lung 
cancer,[93] although this adverse effect disappeared after a 
longer follow-up.[94] Vitamin E did not protect against lung 
cancer in this study, but reduced the risk of prostate cancer in 
smokers.[93] Selenium is an essential component of a range of 
selenoproteins. Several of these proteins have an antioxidant 
activity or are involved in antioxidant mechanisms and 
detoxify ROS, such as glutathione peroxidase (GPx), which 
acts either alone or in combination with other enzymes, 
such as superoxide dismutase (SOD).[95,96] In a clinical trial of 
subjects with an increased risk for skin cancer, the ability to 
prevent such tumors of selenium in the form of a selenium-
rich yeast dietary supplement was tested. It did not prevent, 
but slightly increased the risk of non-melanoma skin cancer, 
while the risk of colon and particularly prostate cancer was 
reduced.[97-99] 

Selenium and vitamin E
As the above-mentioned RCTs suggested preventive activity 
of selenium and vitamin E for prostate cancer as a secondary 
endpoint, the ability to prevent prostate cancer was evaluated 
in a very large RCT, the Selenium and Vitamin E Cancer 
Prevention Trial (SELECT). However, selenomethionine, 
one of the forms of selenium in the human diet, and alpha-
tocopherol either alone or in combination did not have 
a preventive activity.[100] In a much smaller RCT of men 
with high-grade PIN on biopsy, subjects were provided 
for three years with a mixture of selenium and soy (exact 
preparation was not defined for either in the article) 
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together with alpha-tocopherol or with placebo, but no 
preventive effect was observed on the cumulative incidence 
of prostate cancer.[57] Using two animal models, we tested 
the ability of selenomethionine, selenized yeast, alpha-
tocopherol, and combinations thereof, to prevent prostate 
cancer, but we did not detect any preventive activity of these  
agents.[101,102] However, there is epidemiological and animal 
model evidence to suggest that not alpha tocopherol, but 
gamma-tocopherol, the major tocopherol in the human 
diet,[103] might be protective against prostate cancer.[104,105] 

Lycopene
Lycopene, a very strong ROS-quenching antioxidant present 
in tomatoes, water melons, and other vegetables / fruits, has 
been associated with reduced risk of prostate cancer in some 
epidemiological studies, but not in several others and the overall 
evidence for a protective effect of lycopene is very limited at  
best.[106] Lycopene was negative in two rat models using a 
carcinogen plus testosterone protocol for prostate cancer 
induction[107,108] and in a chemically-induced prostate cancer 
model in rats,[68] but tomato powder increased prostate 
cancer-specific survival in rats treated with carcinogen 
plus testosterone (the effect of lycopene or tomato powder 
on tumor incidence was not assessed in this study).[108] In 
contrast, feeding lycopene, but not tomato paste, from four 
to twenty weeks of age inhibited the development of prostate 
tumors in TRAMP mice, but did not affect the weight of the 
prostate complex.[109] Adding lycopene to a diet containing 
supplemental selenium and vitamin E, retarded tumor 
development in a mildly aggressive TRAMP-like mouse 
model (LADY) and reduced the expression of the oncogenic 
SV-40 transgene, which may explain its tumor inhibitory 
effect.[110] Thus, the results of most animal studies appear to 
indicate a lack of preventive activity of lycopene. There are no 
reports yet of lycopene tested in a RCT with prostate cancer 
as the endpoint. However, lycopene may have antioxidant-
like effects in the human prostate; feeding a lycopene-rich 
tomato sauce reduced the level of oxidative DNA damage 
in the prostate in one Phase II study, but a lycopene-rich 
tomato extract did not do so in another study from the same  
group.[111-113] Consumption of lycopene-rich tomato sauce 
also increased apoptosis in prostate tissue and reduced 
serum PSA in one of these studies.[111] Other clinical trials 
are ongoing. 

Considerations
There are probably many reasons why antioxidants may have 
such diverse effects and did not prevent cancer in several 
studies; some of the more important reasons include: 
• 	 It has been proposed that some or many antioxidants have 

biphasic effects that differ at lower and higher doses.[114-116] 
•	 There are diverse mechanisms by which antioxidants exert 

their antioxidant effect that may, in part, be affected by 
genetic polymorphisms in genes encoding for antioxidant 
proteins, which may lead to different effects in different 
people exposed to the same antioxidant dose.[90,117-119] 

•	 Many antioxidant agents have biologically significant effects 
of a non-antioxidant nature and are known or likely to 
interact with each other. For example we found that at 
low, physiologically relevant concentrations, selenium can 
stimulate in vitro proliferation of prostate cancer cells, while 
it inhibits cell proliferation and indices of apoptosis only at 
higher concentrations; effects that are probably not related 
to its incorporation in antioxidant selenoproteins.[120] 

• 	 A critical issue is the dietary supply of antioxidants before 
intervention with these agents is started in RCTs and 
animal studies. For example, in the aforementioned RCT 
with selenized yeast, the risk of prostate cancer was only 
reduced in men who had low baseline selenium levels.[121] 
Data on this issue from the SELECT trial are not (yet) 
available. In most animal studies, baseline diets were fully 
selenium-sufficient and supplementation might not have 
increased the antioxidant status further.[85, 101] Indeed, we 
did not discover that selenomethionine prevented oxidative 
DNA damage or that it induced expression or activity of 
GPx or SOD antioxidant enzymes in such an experiment 
with rats [Ozten and Bosland, unpublished data]. 

•	 For selenium, another important issue is the dietary forms 
of this agent that are studied, because they can differ 
in bioactivation pathways.[122] Selenium has different 
forms, including various organoselenium compounds 
such as selenomethionine, Se-methylselenocysteine, and 
methylseleninic acid, which does not naturally occur, as 
well as inorganic selenium compounds such as selenite.[123] 
Each form can trigger different metabolic pathways, leading 
to differences in their cancer suppressing activity.[124] 

•	 There are many dietary factors that have significant 
antioxidant activity, in addition to their major biological 
effects, even though they are not commonly considered 
antioxidants. The soy isoflavone genistein is one such 
factor that has substantive antioxidant activity, through ROS 
scavenging and via up-regulation of the expression and 
activity of antioxidant enzymes at physiologically relevant 
doses,[35,40-42] whereas many of its other potential anti-
cancer properties, such as tyrosine kinase inhibition, may 
predominate only at unrealistically high dietary levels.[35,36] 

In conclusion, important antioxidants are likely to have highly 
non-linear dose-response relationships with respect to their 
anticancer activity and to have significant interactions with 
factors that are difficult or impossible to control in RCTs and 
even animal studies, but substantially modify antioxidant 
efficacy. Most troubling is the possibility that some 
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antioxidants at physiologically achievable doses may have 
adverse, cancer-enhancing activity that may unpredictably 
vary among humans.

TRANSLATION OF PRECLINICAL 
CHEMOPREVENTION EFFICACY DATA 

For translation of preclinical chemoprevention data to human 
testing in randomized clinical trials, several critical issues need 
to be considered, such as dose, form, and bioavailability of the 
agent, timing of treatment, clinical trial design, and predictive 
value of the preclinical models. The agent dose in preclinical 
studies is usually 40 – 80% of the maximally tolerated dose, 
but in humans lower doses may be required by regulatory 
agencies or deemed prudent by investigators. Naturally 
occurring chemoprevention agents are also often tested in 
animal models at doses higher than those physiologically 
relevant in humans, which may have different, sometimes 
potentially harmful effects. A recent report on such biphasic 
effects of genistein in preclinical models suggests the 
potential for harm at low, physiologically relevant doses.[34] 
The form of the agent used in animal studies, often mixed 
into the diet, may not be feasible in humans, for whom 
administration in tablets or capsules is typically used. The 
bioavailability of some agents with considerable in vitro 
cancer-inhibitory activity is poor, such as is the case for 
curcumin.[66] In addition, there is very little information about 
the bioavailability of any agent to the relevant target, prostate 
tissue. Only for lycopene are there data in this respect, but the 
metabolism of this and other compounds may be complex 
and result in the presence of metabolites with unknown 
activity in prostate tissue.[113] Thus, preclinical studies and 
subsequent RCTs must be coordinated, such that both 
form and bioavailability of the agents tested are considered 
and agent metabolism is addressed as well. Importantly, the 
timing of agent administration in animal studies and human 
clinical trials typically differs considerably; chemopreventive 
treatment of humans is typically not considered until middle 
age. Therefore, delayed administration of the agent under test 
must be included in the preclinical research phase, which has 
been proven feasible.[82] For some agents, such as green tea 
polyphenols and genistein, preventive activity in preclinical 
models has only been identified when treatment occurred 
early in life,[7,8] which is obviously not feasible in humans. 

Other important issues in translating preclinical data pertain 
to the study design of clinical prevention trials.[3,125,126] 
Following Phase I safety studies, short-term Phase II studies, 
with agent administration before radical prostatectomy, are 
needed, to further establish safety and generate data on 
efficacy using relevant intermediate end-points in the prostate 
tissue. Beyond the Phase II studies, trials of intermediate 

duration are needed prior to embarking on large Phase III 
studies. Several study designs have been proposed, most of 
which are applied to populations at high risk for prostate 
cancer, such as men with elevated PSA, but negative biopsies, 
men with high-grade PIN, but no cancer on biopsy, or men 
with a family history of prostate cancer.[3,125,126] One such 
type of intermediate trial involves treatment of men with 
recurring prostate cancer, with reduction in the rise of PSA 
in these men as the end-point.[3,125,126] The problem with 
this study design is that one cannot differentiate between 
the effects of the test agent on prostate cancer cell growth 
and effects on PSA expression, which are not necessarily 
linked and can even occur in opposite directions. One other 
intermediate trial design involves treatment of men at high 
risk of recurrence after radical prostatectomy.[3] This design 
not only includes a relatively low sample size (250 – 300 
subjects) and short duration (two to three years of treatment), 
but focuses on prostate cancer that is clinically significant and 
potentially lethal. This is important because many prostate 
cancers currently detected in the USA have questionable or 
low clinical significance and may not need to be prevented. 
Thus, clinical trials that focus on clinically significant prostate 
cancer are crucial in developing chemopreventive agents 
that are active against aggressive, potentially lethal forms 
of prostate cancer. However, no such studies have been 
completed to date. Of note, two of the currently completed 
Phase III RCTs for the chemoprevention of prostate cancer, 
SELECT and PCPT, involve average risk men, whereas 
participants of the REDUCE trial had elevated risk of prostate 
cancer associated with elevated PSA levels. In one other RCT 
with men at increased risk of prostate cancer because of the 
presence of high grade PIN on biopsy, but no cancer[127], the 
antiestrogen toremifene did not significantly reduce prostate 
cancer development in three years of follow-up [http://
prostatecancerinfolink.net/risk-prevention/prevention-
prostatecancer/other-trials/]. In all four studies, the majority 
of detected cancers were likely of low clinical significance but 
not distinguishable from potentially lethal cancers. 

Predictive ability of preclinical models
The ability of preclinical models to predict the outcome 
of subsequent clinical trials is one of the most important 
issues in the translation of preclinical chemoprevention 
data. Preclinical studies of selenium and vitamin E, with 
rat models, have been uniformly negative, as indicated 
earlier, and were thus fully predictive of the negative 
outcome of SELECT. Similar preclinical model studies with 
antiandrogens[73,74] were also predictive of the reduction in 
prostate cancer development in the PCPT and REDUCE 
trials with 5α-reductase inhibitors.[77,78] Tamoxifen was not 
active in preventing prostate cancer in a rat model study,[74] 
predictive of the lack of significant efficacy of the antiestrogen 
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toremifene. The predictive value of animal models for other 
chemoprevention agents is not clear because of the lack 
of definitive clinical trials. The limited clinical trials with 
silibinin, green tea polyphenols, lycopene, soy, and 4-HPR 
are insufficient to allow a formal definitive evaluation of the 
predictive ability of preclinical animal models for these agents.

CONCLUDING REMARKS

A well-coordinated and concerted effort to developing 
chemoprevention agents for prostate cancer, by applying a 
rational approach to translating relevant and reproducible 
preclinical data to validated clinical trials, focusing on agents 
that hold substantial promise, will be essential for producing 
preventive treatments that are substantially active against 
clinically significant disease without the potential for harm. 
Bioavailability of agents for the prostate, and systemic and 
prostatic metabolism of agents, may be critically important, 
but remains underappreciated, as there are few pertinent 
data from both preclinical models and human clinical trials. 
Antioxidants have not emerged as being active against prostate 
cancer development, while several naturally occurring agents 
have not been moved forward in translational approaches. 
Agents that target androgen mechanisms have reduced 
detection of prostate cancer, but it is uncertain whether 
these compounds reduce prostate cancer-specific mortality 
or significantly slow the disease progression. Other agents 
have met with a poorly coordinated approach to their 
development as chemopreventives and / or have been tested 
in limited or inconclusive clinical trials. Problems in this 
regard are: (1) Negative results (i.e., lack of activity) and 
potentially harmful effects of candidate agents are often not 
published, (2) chemoprevention is often not considered 
profitable by the pharmaceutical and food industries, 
limiting targeted investment, and (3) funding agencies are 
hesitant to put together cohesive and well-coordinated 
approaches to chemopreventive agent development, relying 
instead on investigator-initiated approaches that, almost by 
definition, are doomed to be uncoordinated. In addition, 
prostate cancer is a highly heterogeneous disease at the 
molecular level, impeding targeted chemopreventive drug 
development.  Moreover, most chemopreventive agents 
have multiple complex activities that can be profoundly non-
linear in relation to dose and interaction with other factors, 
of both genetic (e.g., polymorphisms in critical genes) and 
environmental nature (e.g., diet). Finally, prostate cancer, as 
a disease, presents us with some additional problems that 
pose significant challenges to designing chemoprevention 
clinical trials and interpreting their results: (a) Most prostate 
malignancies clinically detected in the US and other western 
countries are not clinically significant, in the sense that they 
do not lead to cancer-specific mortality; (b) the prevalence 

of microscopic-size prostate cancers often of doubtful 
clinical significance is very high in middle-aged and older 
men around the world; and (c) at present, it is difficult to 
differentiate clinically significant from insignificant cancers 
in a majority of the cases. The good news is that some 
of the currently available preclinical models appear to be 
predictive of the outcome of clinical trials and will provide 
useful data for the development of rational approaches to the 
chemoprevention of prostate cancer.

NOTE ADDED IN PROOF

In a just published article, dietary supplementation of healthy 
men with vitamin E was reported to significantly increase risk 
of prostate cancer in the SELECT study, with a hazard ratio 
of 1.17 (99% confidence interval 1.004-1.36; P = 0.008).[128] 
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