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Abstract
“Gene amplification causes overexpression” is a longstanding and well‑accepted concept in cancer genetics. 
However, raking the whole literature, we find only statistical analyses showing a positive correlation between 
gene copy number and expression level, but do not find convincing experimental corroboration for this 
notion, for most of the amplified oncogenes in cancers. Since an association does not need to be an actual 
causal relation, in our opinion, this widespread notion still remains a reasonable but unproven assumption 
awaiting experimental verification.
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INTRODUCTION

Cancers often manifest increased expression of many 
oncogenes and amplification of some.[1‑3] Oncogene 
amplification is found in a broad spectrum of tumors and 
is considered to play important roles not only in formation 
of cancer, but also in its later progression to states of 
metastasis and therapy resistance.[1,4,5] The amplified 
copy or copies may appear on the same chromosome as 
the parental alleles, but may also be translocated to other 
chromosome(s) [Figure 1a] or even to extra‑chromosomal 
acentric elements.[1,4,6]
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Gene expression is known to be regulated not only by 
various epigenetic changes[7‑10] and regulatory RNAs,[11‑15] 
but also by genetic mechanisms, including gene dose, 
i.e., copy number of the gene. There are many occasions 
in which overexpression of one oncogene is not associated 
with detectable amplification of the gene and thus is likely 
due to overactivation of the paternally or/and maternally 
derived alleles of the gene. For instance, in one study of 
glioblastomas, the MET oncogene is amplified in only 
5.1% of cases, but is overexpressed in 13.1% of the cases,[16] 
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indicating that in many cases, the increase in the expression 
is not due to amplification. Similarly, in a study of esophageal 
carcinoma, MDM2 copy number is not correlated with its 
expression level.[17] Overexpression of epidermal growth 
factor receptor (EGFR) in ependymoma is common and 
not correlated to gene copy number either.[18] For some 
genes such as the human epidermal growth factor receptor 
2 (HER2),[19] overexpression is more related to gene 
mutation, and mutation and amplification may occur in 
different patients. Moreover, gene amplification shows 
topographic heterogeneity in a given tumor, just like the 
well‑recognized heterogeneity of the expression level. In 
fact, heterogeneity of gene amplification is omnipresent.[20] 
However, the copy number and the expression level are often 
not correlated topographically.[21,22]

There are even some occasions that seem to be counterintuitive, 
as in which gene amplification is actually associated with 
decreased expression.[23] One of the possible explanations 
for this phenomenon is that not only the amplified allele(s) 
are inactive, but also one or both of the parental alleles 
are inactivated. In fact, some cancer cases show decreased 
expression and deletion of some oncogenes, such as decreased 
c‑MYC expression[24] and deletion of the c‑MYC oncogene.[25] 
In our musing, this is reasonable because most genes actually 
have dual functions, being an oncogene in some situations 
but being a tumor suppressor gene in the others[26‑29] and 
because rearrangement is a mechanism to inactivate tumor 
suppressor genes.[28] EGFR gene is amplified in about 50% of 

the newly diagnosed cases of glioblastoma, but the amplified 
allele(s) are often lost during primary culture,[30] suggesting 
that the excessive copy or copies may no longer be needed for, 
or may even be detrimental to, the survival of glioblastoma 
cells in culture and thus are trimmed away. Mechanistically, 
this occurs likely via DNA recombination during cell division 
and presumably because the cells are no longer under the 
selective pressure in the culture,[30] and such removal of the 
amplified copy or copies is more often seen, and can be much 
easily verified in bacteria.[31] Therefore, although it is still 
not quite clear why some cancer cases show decreases in the 
expression and the gene dose of some oncogenes, it may be 
related to growth advantage,[3,32‑34] which may mechanistically 
vary among cases. It is also possible that the paternally and 
maternally derived alleles are actually suppressed while the 
amplified alleles are activated and overexpressed, which may 
end up with a net result of little change in the expression level.

Relative to the above‑described occasions, it is much more 
often that amplification of an oncogene is associated with 
increased gene expression,[35] as has been shown by ample 
statistical analyses on the correlation between the copy 
number of the gene and its expression level.[36,37] For instance, 
some studies show that EGFR overexpression is correlated 
with its amplification in nonsmall‑cell lung cancer,[38,39] 
and a similar correlation is recently reported for the SQLE 
gene in breast cancer.[40] In fact, most studies conclude 
that the increase in the expression is ascribed to the gene 
amplification, i.e., the increase in the gene copy number, 
making this conclusion a longstanding and well‑accepted 
concept in cancer genetics.[36,37,41] For example, amplification 
of HER2 gene is considered a major mechanism for its 
overexpression in breast cancer.[42] However, an association 
shown in these studies does not need to be an actual 
cause–result relationship. We have carefully scrutinized the 
literature but have not found convincing evidence, other 
than a positive statistical correlation, for this concept of 
“amplification causes overexpression” for many amplified 
oncogenes in cancers. In fact, different results and 
conclusions have been reported occasionally, such as a recent 
report showing that TOP2A overexpression in hepatocellular 
carcinoma was not secondary to gene amplification.[43] The 
fact that one or both of the parental alleles of the oncogene 
are also activated and overexpressed in many cancer tissues or 
cell lines, as aforementioned, complicates the situation. For 
example, the c‑MYC oncogene is overexpressed in roughly 
50% of the cases across all cancer types.[44‑46] Amplification 
of the c‑MYC gene also occurs often,[47] but the frequency 
is still much lower than the overexpression rate in the same 
cancer types,[44,47] indicating that c‑MYC overexpression is 
not associated with amplification in most cases of almost all 
cancer types. In other words, overactivation of one or both 

Figure 1: Illustration of the relationship between the parental 
alleles and the amplified ones of an oncogene. (a) In a cancer cell, a 
gene that locates at chromosome 8 (yellow dots) has two amplified 
copies located on one of the two 8th chromosomes, either the 
paternally or the maternally derived one. Moreover, the gene 
also has an amplified copy on each of the two 10th chromosomes 
and two copies on one of the two 12th chromosomes (red dots). 
Aneuploid chromosomes with amplif ied oncogenes often 
appear in cancer, but are not illustrated here. Although the 
cell shows increased expression of this gene, relatively to the 
normal cells, it is difficult to pinpoint which one or ones of these 
eight (two normal and six amplified) alleles are responsible 
for the excess of the RNA transcripts. (b) If both of the gene 
(red bar) and its promoter (short yellow bar) at chromosome 
8 are amplified and the amplified copy is translocated to one of 
the 10th chromosomes, the co‑amplified promoter may allow the 
amplified allele to be activated, and thus overexpressed, in a way 
similar to the activation of the parental allele(s)
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of the normal c‑MYC alleles at the 8q24.21 of the paternally 
and maternally derived chromosome 8 is responsible for the 
overexpression in most cases.

It is a very reasonable assumption that the amplified copies 
or alleles are activated, even when they are translocated 
to other chromosomes because the regulatory region of 
the gene, often referred to as “promoter,” is very likely 
to be co‑amplified along with the oncogene to allow the 
excessive copies to be co‑activated along with their parental 
ones [Figure 1b]. However, this assumption may not 
always be real because an excessive copy at a new location 
of either the same chromosome or another chromosome 
is very likely to be under the sway of the local regulatory 
DNA sequence as well. The result could be a suppression 
of the promoter, which may be one possible mechanism for 
the aforementioned suppression of the amplified allele(s). 
Since in most cases, one or both of the parental alleles are 
also overexpressed, it is difficult to determine whether 
the excessive RNA transcripts are derived solely from the 
parental allele(s), solely from the amplified allele(s), or from 
both [Figure 1a]. In other words, the observation that in most 
cases one or both of the parental alleles are activated and 
overexpressed muddles things up. In fact, to our knowledge, 
few attempts have hitherto been made to differentiate these 
three scenarios and differentiate the transcriptional activities 
between the excessive allele(s) and the parental ones. This is 
in part because such studies are technically difficult, unless 
the excessive allele(s) have mutations while the parental 
ones remain to be the wild type or the excessive alleles 
have different mutations from those in the parental alleles 
so that sequencing the complementary DNA can result in 
information on whether there are any RNAs transcribed 
from the amplified allele(s). If the amplified alleles have a 
deletion or insertion or have a mutation that changes the 
transcript splicing, resulting in a difference in the mRNA 
size as frequently reported in cancers,[26,48‑52] the difference 
may be identified more easily by using reverse transcription 
and ensuing polymerase chain reactions to determine the 
sizes of the mRNA variants.

Most studies of DNA amplification have been focused on the 
expression of the protein‑coding gene in the DNA amplicon, 
without giving it enough attention that amplification of a 
genomic region is not the same thing as amplification of the 
gene in the amplicon. This is because only about 1.5% of 
the human genome encodes proteins[26,27,50] and because not 
only protein‑coding mRNAs, but also different noncoding 
RNAs as regulatory factors can be expressed from the DNA 
amplicon.[26] In fact, some genomic regions that harbor only 
noncoding RNAs, such as the PVT‑1,[53,54] are also amplified 
in cancers. Probably, in many cases, it is a noncoding transcript 

produced from the DNA amplicon as a regulatory RNA, but 
not an mRNA and its protein product of the annotated gene 
that elicits a biological function to confer a survival or growth 
advantage on the cancer cell and thus, the cell does not 
require the mRNA or its protein product to be overexpressed. 
This not only is one possible explanation for why on many 
occasions the expression level is not correlated with the 
gene copy number, but may also explain such occasions as 
that in which amplification of the MYCN gene is a good 
prognostic marker for neuroblastoma, but the significance 
of MYCN overexpression in prognosis is unclear.[55] In a 
nutshell, noncoding regulatory RNAs derived from the 
DNA amplicon in particular are much underexplored and 
deserve many more studies, albeit noncoding RNAs have 
been extensively studied in cancer in general.

CONCLUSION

The widespread concept that “gene amplification is a 
cause of increased expression” still remains as a reasonable 
assumption, but has not yet been a convincingly proven 
fact for most, if not all, oncogenes in cancers. Therefore, 
experimental evidence is still required for establishing this 
assumable causal relationship. A caveat needs to be given that 
gene rearrangement is a different type of genetic alteration 
although it is often accompanied by gene amplification. 
Rearrangement may cause formation of fusion gene(s) that 
produce fusion mRNAs and fusion proteins,[50,56,57] but their 
chimeric sequences can easily distinguish themselves from 
the transcripts from the parental alleles.
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